
12.6 Check Your Understanding Consider using Ampère’s law to calculate the magnetic fields of a finite
straight wire and of a circular loop of wire. Why is it not useful for these calculations?

12.6 | Solenoids and Toroids

Learning Objectives

By the end of this section, you will be able to:

• Establish a relationship for how the magnetic field of a solenoid varies with distance and
current by using both the Biot-Savart law and Ampère’s law

• Establish a relationship for how the magnetic field of a toroid varies with distance and current
by using Ampère’s law

Two of the most common and useful electromagnetic devices are called solenoids and toroids. In one form or another, they
are part of numerous instruments, both large and small. In this section, we examine the magnetic field typical of these
devices.

Solenoids
A long wire wound in the form of a helical coil is known as a solenoid. Solenoids are commonly used in experimental
research requiring magnetic fields. A solenoid is generally easy to wind, and near its center, its magnetic field is quite
uniform and directly proportional to the current in the wire.

Figure 12.19 shows a solenoid consisting of N turns of wire tightly wound over a length L. A current I is flowing along
the wire of the solenoid. The number of turns per unit length is N/L; therefore, the number of turns in an infinitesimal length
dy are (N/L)dy turns. This produces a current

(12.24)dI = NI
L dy.

We first calculate the magnetic field at the point P of Figure 12.19. This point is on the central axis of the solenoid. We
are basically cutting the solenoid into thin slices that are dy thick and treating each as a current loop. Thus, dI is the current

through each slice. The magnetic field d B→ due to the current dI in dy can be found with the help of Equation 12.15

and Equation 12.24:

(12.25)
d B→ = µ0 R2 dI

2(y2 + R2)3/2 j
^

=
⎛

⎝
⎜µ0 IR2 N

2L j
^⎞

⎠
⎟ dy
(y2 + R2)3/2

where we used Equation 12.24 to replace dI. The resultant field at P is found by integrating d B→ along the entire length

of the solenoid. It’s easiest to evaluate this integral by changing the independent variable from y to θ. From inspection of

Figure 12.19, we have:

(12.26)sinθ = y
y2 + R2

.
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Figure 12.19 (a) A solenoid is a long wire wound in the shape of a helix. (b) The
magnetic field at the point P on the axis of the solenoid is the net field due to all of the
current loops.

Taking the differential of both sides of this equation, we obtain

cosθ dθ =
⎡

⎣
⎢− y2

(y2 + R2)3/2 + 1
y2 + R2

⎤

⎦
⎥dy

= R2 dy
(y2 + R2)3/2.

When this is substituted into the equation for d B→ , we have

(12.27)
B→ = µI0 N

2L j
^∫

θ1

θ2
cosθ dθ = µI 0 N

2L (sinθ2 − sinθ1) j
^

,

which is the magnetic field along the central axis of a finite solenoid.

Of special interest is the infinitely long solenoid, for which L → ∞. From a practical point of view, the infinite solenoid

is one whose length is much larger than its radius (L ≫ R). In this case, θ1 = −π
2 and θ2 = π

2. Then from Equation

12.27, the magnetic field along the central axis of an infinite solenoid is

B→ = µ0 IN
2L j

^ ⎡
⎣sin(π/2) − sin(−π/2)⎤

⎦ = µ0 IN
L j

^

or
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(12.28)B→ = µ0 nI j
^

,

where n is the number of turns per unit length. You can find the direction of B→ with a right-hand rule: Curl your fingers

in the direction of the current, and your thumb points along the magnetic field in the interior of the solenoid.

We now use these properties, along with Ampère’s law, to calculate the magnitude of the magnetic field at any location

inside the infinite solenoid. Consider the closed path of Figure 12.20. Along segment 1, B→ is uniform and parallel to the

path. Along segments 2 and 4, B→ is perpendicular to part of the path and vanishes over the rest of it. Therefore, segments

2 and 4 do not contribute to the line integral in Ampère’s law. Along segment 3, B→ = 0 because the magnetic field is zero

outside the solenoid. If you consider an Ampère’s law loop outside of the solenoid, the current flows in opposite directions
on different segments of wire. Therefore, there is no enclosed current and no magnetic field according to Ampère’s law.
Thus, there is no contribution to the line integral from segment 3. As a result, we find

(12.29)∮ B→ · d l→ = ∫
1

B→ · d l→ = Bl.

Figure 12.20 The path of integration used in Ampère’s law to
evaluate the magnetic field of an infinite solenoid.

The solenoid has n turns per unit length, so the current that passes through the surface enclosed by the path is nlI. Therefore,
from Ampère’s law,

Bl = µ0 nlI

and

(12.30)B = µ0 nI

within the solenoid. This agrees with what we found earlier for B on the central axis of the solenoid. Here, however, the
location of segment 1 is arbitrary, so we have found that this equation gives the magnetic field everywhere inside the infinite
solenoid.

Outside the solenoid, one can draw an Ampère’s law loop around the entire solenoid. This would enclose current flowing in
both directions. Therefore, the net current inside the loop is zero. According to Ampère’s law, if the net current is zero, the
magnetic field must be zero. Therefore, for locations outside of the solenoid’s radius, the magnetic field is zero.

When a patient undergoes a magnetic resonance imaging (MRI) scan, the person lies down on a table that is moved into
the center of a large solenoid that can generate very large magnetic fields. The solenoid is capable of these high fields from
high currents flowing through superconducting wires. The large magnetic field is used to change the spin of protons in the
patient’s body. The time it takes for the spins to align or relax (return to original orientation) is a signature of different
tissues that can be analyzed to see if the structures of the tissues is normal (Figure 12.21).
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12.7

Figure 12.21 In an MRI machine, a large magnetic field is generated by the cylindrical
solenoid surrounding the patient. (credit: Liz West)

Example 12.9

Magnetic Field Inside a Solenoid

A solenoid has 300 turns wound around a cylinder of diameter 1.20 cm and length 14.0 cm. If the current through
the coils is 0.410 A, what is the magnitude of the magnetic field inside and near the middle of the solenoid?

Strategy

We are given the number of turns and the length of the solenoid so we can find the number of turns per unit length.
Therefore, the magnetic field inside and near the middle of the solenoid is given by Equation 12.30. Outside
the solenoid, the magnetic field is zero.

Solution

The number of turns per unit length is

n = 300 turns
0.140 m = 2.14 × 103 turns/m.

The magnetic field produced inside the solenoid is

B = µ0 nI = (4π × 10−7 T ⋅ m/A)(2.14 × 103 turns/m)(0.410 A)

B = 1.10 × 10−3 T.

Significance

This solution is valid only if the length of the solenoid is reasonably large compared with its diameter. This
example is a case where this is valid.

Check Your Understanding What is the ratio of the magnetic field produced from using a finite
formula over the infinite approximation for an angle θ of (a) 85°? (b) 89°? The solenoid has 1000 turns in 50

cm with a current of 1.0 A flowing through the coils

Toroids
A toroid is a donut-shaped coil closely wound with one continuous wire, as illustrated in part (a) of Figure 12.22. If the
toroid has N windings and the current in the wire is I, what is the magnetic field both inside and outside the toroid?
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Figure 12.22 (a) A toroid is a coil wound into a donut-shaped
object. (b) A loosely wound toroid does not have cylindrical
symmetry. (c) In a tightly wound toroid, cylindrical symmetry is a
very good approximation. (d) Several paths of integration for
Ampère’s law.

We begin by assuming cylindrical symmetry around the axis OO’. Actually, this assumption is not precisely correct, for as
part (b) of Figure 12.22 shows, the view of the toroidal coil varies from point to point (for example, P1, P2, and P3 )

on a circular path centered around OO’. However, if the toroid is tightly wound, all points on the circle become essentially
equivalent [part (c) of Figure 12.22], and cylindrical symmetry is an accurate approximation.

With this symmetry, the magnetic field must be tangent to and constant in magnitude along any circular path centered on
OO’. This allows us to write for each of the paths D1, D2, and D3 shown in part (d) of Figure 12.22,

(12.31)∮ B→ · d l→ = B(2πr).

Ampère’s law relates this integral to the net current passing through any surface bounded by the path of integration. For
a path that is external to the toroid, either no current passes through the enclosing surface (path D1 ), or the current

passing through the surface in one direction is exactly balanced by the current passing through it in the opposite direction
(path D3). In either case, there is no net current passing through the surface, so

∮ B(2πr) = 0

and

(12.32)B = 0 (outside the toroid).

The turns of a toroid form a helix, rather than circular loops. As a result, there is a small field external to the coil; however,
the derivation above holds if the coils were circular.

For a circular path within the toroid (path D2 ), the current in the wire cuts the surface N times, resulting in a net current NI

through the surface. We now find with Ampère’s law,

B(2πr) = µ0 NI
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and

(12.33)B = µ0 NI
2πr (within the toroid).

The magnetic field is directed in the counterclockwise direction for the windings shown. When the current in the coils is
reversed, the direction of the magnetic field also reverses.

The magnetic field inside a toroid is not uniform, as it varies inversely with the distance r from the axis OO’. However,
if the central radius R (the radius midway between the inner and outer radii of the toroid) is much larger than the cross-
sectional diameter of the coils r, the variation is fairly small, and the magnitude of the magnetic field may be calculated by
Equation 12.33 where r = R.

12.7 | Magnetism in Matter

Learning Objectives

By the end of this section, you will be able to:

• Classify magnetic materials as paramagnetic, diamagnetic, or ferromagnetic, based on their
response to a magnetic field

• Sketch how magnetic dipoles align with the magnetic field in each type of substance

• Define hysteresis and magnetic susceptibility, which determines the type of magnetic material

Why are certain materials magnetic and others not? And why do certain substances become magnetized by a field, whereas
others are unaffected? To answer such questions, we need an understanding of magnetism on a microscopic level.

Within an atom, every electron travels in an orbit and spins on an internal axis. Both types of motion produce current loops
and therefore magnetic dipoles. For a particular atom, the net magnetic dipole moment is the vector sum of the magnetic
dipole moments. Values of µ for several types of atoms are given in Table 12.1. Notice that some atoms have a zero net

dipole moment and that the magnitudes of the nonvanishing moments are typically 10−23 A · m2.

Atom Magnetic Moment ⎛
⎝10−24 A · m2⎞

⎠

H 9.27

He 0

Li 9.27

O 13.9

Na 9.27

S 13.9

Table 12.1 Magnetic Moments of Some Atoms

A handful of matter has approximately 1026 atoms and ions, each with its magnetic dipole moment. If no external magnetic

field is present, the magnetic dipoles are randomly oriented—as many are pointed up as down, as many are pointed east as
west, and so on. Consequently, the net magnetic dipole moment of the sample is zero. However, if the sample is placed in
a magnetic field, these dipoles tend to align with the field (see Equation 12.14), and this alignment determines how the
sample responds to the field. On the basis of this response, a material is said to be either paramagnetic, ferromagnetic, or
diamagnetic.

In a paramagnetic material, only a small fraction (roughly one-third) of the magnetic dipoles are aligned with the applied
field. Since each dipole produces its own magnetic field, this alignment contributes an extra magnetic field, which enhances
the applied field. When a ferromagnetic material is placed in a magnetic field, its magnetic dipoles also become aligned;
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